On the (Im)possibility of Preserving Utility and Privacy in Personalized Social Recommendations

نویسندگان

  • Ashwin Machanavajjhala
  • Aleksandra Korolova
  • Atish Das Sarma
چکیده

With the recent surge of social networks like Facebook, new forms of recommendations have become possible – personalized recommendations of ads, content, and even new social and product connections based on one’s social interactions. In this paper, we study whether “social recommendations”, or recommendations that utilize a user’s social network, can be made without disclosing sensitive links between users. More precisely, we quantify the loss in utility when existing recommendation algorithms are modified to satisfy a strong notion of privacy called differential privacy. We propose lower bounds on the minimum loss in utility for any recommendation algorithm that is differentially private. We also propose two recommendation algorithms that satisfy differential privacy, analyze their performance in comparison to the lower bound, both analytically and experimentally, and show that good private social recommendations are feasible only for a few users in the social network or for a lenient setting of privacy parameters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A centralized privacy-preserving framework for online social networks

There are some critical privacy concerns in the current online social networks (OSNs). Users' information is disclosed to different entities that they were not supposed to access. Furthermore, the notion of friendship is inadequate in OSNs since the degree of social relationships between users dynamically changes over the time. Additionally, users may define similar privacy settings for their f...

متن کامل

An Effective Method for Utility Preserving Social Network Graph Anonymization Based on Mathematical Modeling

In recent years, privacy concerns about social network graph data publishing has increased due to the widespread use of such data for research purposes. This paper addresses the problem of identity disclosure risk of a node assuming that the adversary identifies one of its immediate neighbors in the published data. The related anonymity level of a graph is formulated and a mathematical model is...

متن کامل

Personalized Social Recommendations - Accurate or Private?

With the recent surge of social networks such as Facebook, new forms of recommendations have become possible – recommendations that rely on one’s social connections in order to make personalized recommendations of ads, content, products, and people. Since recommendations may use sensitive information, it is speculated that these recommendations are associated with privacy risks. The main contri...

متن کامل

Differentially Private Local Electricity Markets

Privacy-preserving electricity markets have a key role in steering customers towards participation in local electricity markets by guarantying to protect their sensitive information. Moreover, these markets make it possible to statically release and share the market outputs for social good. This paper aims to design a market for local energy communities by implementing Differential Privacy (DP)...

متن کامل

A Privacy-Preserving Framework for Personalized, Social Recommendations

We consider the problem of producing item recommendations that are personalized based on a user’s social network, while simultaneously preventing the disclosure of sensitive user-item preferences (e.g., product purchases, ad clicks, web browsing history, etc.). Our main contribution is a privacypreserving framework for a class of social recommendation algorithms that provides strong, formal pri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1004.5600  شماره 

صفحات  -

تاریخ انتشار 2010